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THE theory of the solution, in positive or negative integral numbers, of systems of linear
indeterminate equations, requires the consideration of rectangular matrices, the con-
stituents of which are integral numbers. It will therefore be convenient to explain the
meaning which we shall attach to certain phrases and symbols relating to such matrices.

A matrix containing p constituents in every horizontal row, and ¢ in every vertical

column, is a matrix of the type ¢ Xp. We shall employ the symbol QXP l

, or (when

it is not necessary that the type of the matrix should be indicated in its symbol) the
simpler symbol |A] to represent the matrix

Avp Ag e A,
Ay Agareonn A,
| Ay Ay A,,

If |A| and |B|| be two matrices of the same type, the equation ||A|=|B| indicates that
the constituents of |A] are respectively equal to the constituents of |B|; whereas the
equation |A|=|B| will merely express that the determinants of |A| are equal to the cor-
responding determinants of |[B|. The determinants of a matrix are, of course, the deter-
minants of the greatest square matrices contained in it ; similarly, its minor determinants
of order ¢ are the determinants of the square matrices of the type ¢X¢ that are con-
tained in it. Matrices of the types nX (m-+n) and m X (m-n) are said to be of com-
plementary types; if |A|| and |B| be two such matrices, we shall employ the equation

|A|=[B|
to express that each determinant of ||A| is equal to that determinant of |Bj, by which it

is multiplied in the development of the determinant of the square matrix %“ When

m and » are both uneven numbers, the signs of the determinants

%l and }gl are dif-

ferent: this occasions a certain ambiguity of sign in the interpretation of the equation

|A!=[B|, which, however, will occasion no inconvenience. If m=n, the matrices |A]| and

|B| are at once of the same, and of complementary types; so that, in this case, the

equation |A|=|B| may stand for either of two very different sets of equations; but this
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294 MR. H. J. 8. SMITH ON SYSTEMS OF LINEAR

also is an imperfection of the notation here employed, which it is sufficient to have
pointed out. If £ denote any quantity whatever, it is hardly necessary to state that the
equality
[Al=£X|B]

implies that the determinants of ||A| are respectively £ times the corresponding determi-
nants of |B|.

Let |P] be a square matrix of the type nXn, and ||Q] a matrix of the type n X (n+m)
(where m>0), we shall understand by the matrix compounded of |P|| and |Q|, the matrix
|X]| of the same type as ||Q|, the constituents of which are defined by the equation

Xi,j=Pi, ) Ql,j'l—Pi, 2 Qz,j+ caes +Pi, n Qn,j 5

Xl=[PIxIQl;

in this equation [Q] is said to be premultiplied by |P|, and |P| to be post-multiplied by
[Q]. This definition will suffice for our present purpose; as the only case of composi-
tion which we shall have to consider, is that in which the vertical dimensions of the
matrices to be compounded are all equal, and in which every premultiplying matrix is
square, so that if an oblong matrix present itself at all in a series of matrices to be com-
pounded, it will occupy the last place in the series.

By the greatest divisor of a matrix we are to understand the greatest common divisor
of the determinants of the matrix. If the matrix be square, its greatest divisor is, con-
sequently, the determinant of the matrix. A prime matrix is one of which the greatest
divisor is unity; é. e. the determinants of which are relatively prime. A prime square
matrix (7. . a matrix of which the determinant is unity) we shall call a wnit-matriz.

In any system of linear equations, whether defective or redundant, or neither, we
shall understand by the matrix of the system the matrix formed by the coefficients of
the unknown quantities. If to this matrix we add an additional vertical column, com-
posed of the absolute terms of the equations, the resulting matrix we shall term (for
brevity) the augmented matrix of the system.

Lastly, when we have occasion to consider square matrices, the constituents of which,
excepting those on the principal diameter, are zero, we shall represent them by symbols
of the form |

and we shall write

725 @25 @o -+ @l

where ¢, ¢s, - .- ¢, are the constituents of the principal diameter.

Art. 2. If every determinant of the augmented matrix of a redundant system of linear
equations is equal to zero, while the determinants of the unaugmented matrix are not
all equal to zero, the system admits of one solution, and one only. And in particular if
the matrix of the system be a prime matrix, the values of the unknown quantities which
satisfy the system are integral numbers. For these values may be expressed as fractions
having for their denominators any one of the determinants of the matrix; and these
determinants are relatively prime.
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Let |A| be a given prime matrix of the type n X (n+4m), |[K| a given matrix of the
same type connected with |Al| by the equation

Kl=kx|A, . . . . . . . . . . . 1)
which implies that % is the greatest divisor of |K]|; then the symbolic equation

IK=Ml <AL~ - s (2)
in which || denotes a square matrix of the type n X n, will admit of one solution, and
one only. '

For, to determine %, ,, %, ,, ... k,, ,, the constituents of the rth horizontal row of |&], we
have the redundant system :

Ka', i:A-l, T kr, l+*&2, H kr, 2+ e +An, i kr, m} 3 )
i=1,2,38,...04m ' (5.
which is involved in the symbolic equation (2.). The matrix of this system is the prime

matrix ||Al|; and the determinants of its augmented matrix are all equal to zero; for, by
virtue of equation (1.), they are equal to the determinants

Kr, 19 Kr, 29 c e I{r, n+m

1
—%X :Kl, 15 Kl, 9 s e K2,'n+m
K2, 1 KZ, 29 * o K2, n+m

Kn,l? Kn,m A Kn,n+m

in which two horizontal rows are identical. Thus the system (3.), and consequently the
equation (2.), admits of one solution, and one only. It is evident that the determinant
of || is . The case in which m=0 is not included in this demonstration; its proof,
however, presents no difficulty, and may be omitted here.

A particular case of this theorem (that in which #=2) occurs in the ¢ Disquisitiones
Arithmetice ’ (see art. 234 of that work).

Art. 3. If every determinant of the augmented matrix of a redundant system of linear
congruences be divisible by the modulus, while the greatest divisor of the unaugmented
matrix is prime to the modulus, the system is resoluble and admits of only one solu-
tion. For if the modulus be represented by Px QX R..., P, Q, R.. denoting powers of
unequal primes, one (at least) of the determinants of the unaugmented matrix is prime
to P, one (at least) is prime to Q, &c.; whence it may be inferred that the system is
resoluble for each of the modules P, Q, R..., and admits of only one solution for each
of them ; it is therefore resoluble for their product PXQXR ..., and admits of only
one solution for that modulus.

Let |K| denote (as in the preceding article) a given matrix of the type n X (n+4m), of
which % is the greatest divisor; and let it be required to find the complete solution of
the symbolic equation

IKi=J&l>x)Al, . . « . - . . 0 . . (4)
in which | is a square matrix of which the determinant is %, |A]| a prime matrix of
282
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the same type as [[K|, and in which the constituents of |A|| and ||[f] are the unknown
numbers.

We shall first obtain a particular solution of this equation, and then show how from
any particular solution the complete solution may be deduced.

We may suppose that the constituents of any horizontal row of |K| admit of no
common divisor but unity; for if 8, o, ... 5, be the greatest common divisors of the
constituents of the horizontal rows of |K], we find

K= 0 8 .. &% [KT, . . . . . . . . . (5)

|K'| denoting a matrix the constituents of which are derived from those of [K| by the
relation

, 1
K,=sK,.;. - - -« . .. ... (6)

so that the solution of equation (4.) depends on the solution of a similar equation for
the matrix |[K’|, in which the constituents of each horizontal row are relatively prime.
r X (n4m)

K|

Let then the matrix , %. €. the matrix

K2 19 K2 29 vt KE, n+m ‘ I:]_S]~<n]’

|
j
| K; i Kr 2 e Kr,n+m

be a prime matrix, but let the matrix (r+1) >I<{(n+M)l admit of a greatest divisor w.
Determine @,, w,, .... w, by the system of congruences,
Kl,i “’1+K2,i Wyt ... Kr,i “’rE‘KrH, » mod, #al "
i=1,2,38,...n4m |- (7)

(which, as we have just seen, is always resoluble), and in |[K| replace the constituents
K,,,,: by the numbers
1

HL % G
we thus deduce from |K|| another matrix |[K”| connected with it by the relation
|K|=w X [K"|, and such that the matrix of its first #4+1 horizontal rows is prime. By
proceeding in this manner, we shall at last obtain a prime matrix [|A ], which satisfies
the equation K|=/4X|A/; we may then, by the method of the last article, determine a
square matrix |, satisfying the equation
K=k x Al - - - « « . . . . . (8)

and thus obtain a particular solution of the proposed equation (4.).

To deduce the general solution of that equation, let |4, and |A,| be any two matrices
satisfying it. 'We have therefore the equality

IElx Ad=Ikl > A, - o (9)
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which evidently implies that

A=A - .« . o oo o (10
whence, by the theorem of the last article,

A =]l % A, - - - o o o o o oo (1)
lz| denoting a unit-matrix. Combining (9.) and (11.), we find

BIX e xIA=IRIX AL - - . .. (12)
whence, by the same theorem, it follows that

o . | X el =) 5 - - - -~~~ . o . . o (13)

or, which is the same thing,

Vel=|ko) Xl - - - o o o oo o (14)

lef=* denoting the matrix reciprocal to ||l]. The complete solution of equation (4.) is
therefore contained in the formulee

A=l Ix14)
K= x e |

|| denoting an arbitrary unit-matrix of the type nXn, and |A,|, |k being any two
matrices that satisfy the equation.

In this, as in the preceding article, we have for simplicity excluded the case in which
m=0, and the matrices |K| and |A] are squares. But it is readily seen that no exception
is presented by this particular case.

Art. 4. Let

(15.)

Ai, 1 xl+Ai,2 '7"2+ o +Ai, n+m wn+m=0’1

16.
i=1,2,8, ...n i (16.)

represent a system of indeterminate equations of which the matrix is |A|. We shall
suppose that the determinants of ||A| are not all equal to zero, 7.e. that the system is
independent; so that its index of indeterminatencss (or the excess of the number of
indeterminates above the number of really independent equations) is m. If we take r
solutions of the system, for example the solutions

ws, 19 ws, 2 ws, 3 xs, n+m)]

17.
s=1,2,3,...r | (a7)

it is evident that if # >m, the determinants of the matrix |z are all equal to zero. If
r< m, and if the determinants of the matrix || be not all equal to zero, the solutions
(17.) are said to form @ set of r independent solutions; if r=m, they form @ complete
set of independent solutions. A set of relatively prime solutions is an independent set of
which the matrix is prime; a complete set of relatively prime solutions may be called,
for a reason which will presently appear, a fundamental set of solutions. It is always
possible, in an infinite number of ways, to assign complete sets of independent solutions
of a system of equations of the form (16.). Among the methods by which this may be
accomplished, we shall select one which depends on the following principle :—
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I ‘1 1% (m-i—%)ii

represent any matrix of the type r X (m--r), the determinants of which

are not all equal to zero, and if A,, A,, ... A,,,, be integers which satisfy the equations

e=mtr
2l Gy M= 0,

.o 18.
i=1,28...7] (18)
while @,,1 1, @y, 90 Crirys oo ov Gpin, ma, are integers satisfying the inequality
D s ¢ L3
the determinants of the matrix
“(r-{-l)x(m+7')“
a

are not all equal to zero. ,
For if =21 @,4, , =0, it is evident that by combining this equation with the equa-

X (m+r)
a

tions (18.), we may express each of the determinants § x in succession as a

linear function of the determinants of

i<¢+1) >; (m+7) i' If, therefore, the former deter-

minants do not all vanish, neither can the latter.

Let, then, @, 1, @y 0 .+ Gy nrn represent any particular solution (other, of course,
than that in which every indeterminate is equal to zero) of the system (16.); and let
Ay Anines oo Apiy, nem De integral numbers satisfying the inequality

277::7:+m n+1, & Cm, & io; ot (20')
the system : |
Ai, 1 $1+Ai,2w2+ cee +Ai, nim Lntm =O} e e e e e (21)
7:=1, 2, 3, n+1

(which is obtained by the addition of a single equation to the system (16.)) is itself an
independent system, as appears from the principle just enunciated; its index of inde-

terminateness is therefore m—1. Tet (m—-l)i;(n—]—m)“ represent a compléte set of

independent solutions of (21.); it may then be inferred, from a second application of

the same principle, that i[mx (Z_Em)

represents a complete set of independent solutions

of the proposed system (16.). Thus the determination of a complete set of independent
solutions of a system of which the index of indeterminateness is m, depends on the
determination of a similar set of solutions for a system of which the index is lower by
a unit. By successive reductions, therefore, we shall at last arrive at a system of which
the index of indeterminateness is unity, the complete solution of which is of course
immediately found by evaluating the determinants of its matrix. '
The - practical application of this method supposes only that we can always assign a
particular solution of a system of the form (16.) or (21.). And this, it may be observed,
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can always be done, either by trial, or by other obvious and not unsymmetrical expe-
dients.

Art. 5. If |a| represent the matrix of a complete set of independent solutions of the
proposed system (16.), and |§] be any matrix of the same type as |¢|, and connected with
|a| by the equation

’ lel=& x> - - - - . . . 0o (22)
in which || denotes a square matrix of which the determinant is not zero, it is evident
that the constituents of |§|| are also a complete set of independent sclutions. And, con-
versely, if |§| be the matrix of a complete set of independent solutions, |a|| is also the

matrix of a similar set. For if [K| be the matrix composed of the first minors of |/&], so
that

K| < |&=&, &, &, - ...,
we have from (22.),

[KlI<el=|%, &, ... & &]x|al;
from which it appears that |&, %, .. .| x|, and therefore |a] itself, is the matrix of an
independent set of solutions.

This observation enables us to obtain a complete set of relatively prime solutions, as
soon as we have obtained an independent set. If 5| be the matrix of the independent
set, we have only to determine, by the method of art. 3, a square matrix |%], and an
oblong prime matrix |||, satisfying the equation

|6l= 1] Jle] |
the constituents of |a| are then the terms of a set of fundamental solutions.
Or again, if in art. 4 we employ, instead of the inequality (19.), the equation
S " g he=1, . . . . . . . . . (23)

it is easily shown that if HTX(Z‘H")” be a prime matrix, H(T‘\'l)é (n+m)

! is also
a prime matrix; so that, by following the method of that article, we may obtain
directly a set of fundamental solutions of any proposed system. Only, it will be
observed, that in this mode of obtaining such a set, we suppose that we can assign par-
ticular solutions, not. only of systems of the form (16.), but also of equations of the
form (23.).

Art. 6. The importance of fundamental sets of solutions in the theory of linear inde-
terminate equations is evident from the following proposition :(—

“If |a| represent a set of fundamental solutions of the system (16.), the complete
solution of that system is contained in the formula

&= SivE, Uy, 35
i=1,2,3,... n+m}’

in which £, &, ... &, are absolutely indeterminate integral numbers.”

For it is evident that every set of numbers included in (24.) satisfies (16.); and, con-
versely, if amﬂ,'l, Upmir, 2+« + Umar, nym D€ a0y solution of (16.), the determinants of the

(24.)
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matrix is prime ; whence,

,(m+ 1) Z( (n—{—m),

me(n+m)}
a

are all zero, while the matrix

by a principle employed in art. 2, the system

k=m g
am+l I_Ek =1 Sk ak i

1=1,2,8,.... n+m

is satisfied by one, and only one system of integral values of &, &, ...£,; or, which

is the same thing, the numbers @y 1y Gnire -+ - Gnir nem are included in the for-
mula (24.).
It may be added, that no fractional values of &, 22, ... &, can give integral values

to &), &y ... X,4m; and that the same values of x,, #,, 23, ... %,.., cannot arise from
different values of &, &, ... &,.
The converse of the proposition just established is also true; 7. e.
“Tf the formula
T=ZvEh - . . . . ... (24)

represent every solution of an indeterminate system of equations, the matrix |of is a
prime matrix.”

For if ||| represent a set of fundamental solutions of the indeterminate system, we
may express the constituents of [§]| as linear functions of the constituents of |a], by
means of the equations (24.), so as to obtain an equation of the form

|8]=18]% [,

|¢] denoting a square matrix; whence it immediately appears that ||a| is a prime matrix,
and |£| a unit-matrix.

Thus, if we apply EvLER’s method for the resolution of indeterminate equations to
the system (16.), we obtain, as the final result of the process, a system of equations of
the form (24.); and as it is demonstrable, from the nature of the method itself, that
these final equations contain the complete solution of the proposed system, their matrix
is a prime matrix. ‘

If |l@| and 5] be any two sets of fundamental solutions cf the same system, we shall
have the equation

Pll=1& el
|¢] denoting a unit-matrix. The matrices, therefore, of all sets of fundamental solutions
are deducible, by premultiplication with unit-matrices, from the matrix of any given set
of such solutions.

Art. 7. If o] and |§| represent two complete sets of independent solutions of the
same system, the determinants of | and [[§] are evidently connected by the relation
BX|aj==aX|l, « and B denoting the greatest divisors of |a| and [§ respectively. A
similar relation subsists between the matrix of the system and the matrix of any com-
plete set of independent solutions of it.

Let |A| and |a| represent those matrices respectively, K and % their greatest divisors;
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the relation in question is expressed by the formula
EXA=KXlo, . . . . . . . . . (25)

where it is to be remembered that the types of the matrices ||A|| and |a|| are comple-
mentary; so that, as has been already observed (see art. 1), there is an ambiguity of
sign in the equation (25.).

To obtain its demonstration, let Q and ¢ denote the sums of the squares of the deter-

minants of [A] and |« respectively, and consider the determinant é This determinant

is certainly not zero, for multiplying it by itself, we find

A

A=Qxg¢ . . .. ... (26)

Let, then, “2 be multiplied by any determinant of |A|; for example, by Z+A, , A, ,,

. A, .. Observing that =+A, |, A, ,, ... A, , may assume the form

Ave s Ay oo Any 0,0, 0
A, LA, s Ayy 50,0, ... 0
Avw 2 Asn eiArs 0,0, ... 0
Al,n-H’ A—2,n+l, cee An,n+1 s 1, 0, ----- 0
Al,n+2> A2,n+27 e An,n+2 s Oa 1: '''''' 0
A—l,n+m’ A2,n+m’ e An,n+m, Oa O’ """" 1
we obtain the equation
A
@ XZt+A, , Y VPR An,n=QX 24, ni Contos oo Byt - (27)

in which we may permute the second set of indices in any manner consistent with the

condition that

‘3 should not change its sign; so that we may write

|A
E

XIA=QXldy . . . . . . . . . (28)

A

ol
The equation (25.) is an immediate consequence of this result; and if in that equation
Al
al

the correspondence of the determinants in |A| and |a| being fixed by the matrix

we suppose the correspondence of the determinants to be still fixed by the matrix

we shall have to write
kx|Al= KxX|d,
or

I x|Al=—XK x|,

is a positive or negative number.

. A
according as s

MDCCCLXI. 21
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Art. 8. From the preceding principles we may deduce the solution of the following
problem, which admits of important applications in other parts of arithmetic :—

“To find all the matrices of a given type, of which the determinants have given
values, not all equal to zero.” V

Two particular cases of this problem (those in which the matrix is of the type 2X 3
and 2 X 4) occur in the ¢ Disquisitiones Arithmetice’ (see arts. 279 and 236). In both
places Gauss has suppressed the analysis of the problem, and has only given a synthe-
tical demonstration that its conditions are satisfied by the solution he assigns. This,
indeed, in art. 279, he expressly observes. He has also suppressed his method of
deducing the complete solution from any particular solution,—an omission, however,
which may probably be supplied by a comparison of art. 234 with art. 213,1. The very
general and most important case, of a matrix of the type »X (n+1), has been subse-
quently treated of by M. HERMITE *.

Let |2 denote a matrix of the type nX (n-+m), of which the constituents are abso-

lutely indeterminate quantities; writing A for —ﬁ%%’%), we shall represent its determi-

nants by X, X,, .... X,.. Ifm>1, these determinants are not all independent, but
are connected by certain identities of the form

DX, X, ... X)=0, . . . . . . . . (29)

® denoting a rational and integral homogeneous function with numerical coefficients.
If, therefore, C,, C,, ... C, be a given set of integral numbers, which can be represented
as the determinants of a matrix of the type # X (n+4m), these numbers will satisfy every
relation of the form (29.); so that the identity

(X, X,, ... X,)=0
will involve also the numerical equation
PC,Cyp...CH=0. . . . . . . .. (30)

To obtain a convenient notation for C,, C,, ... C,, let us imagine that we have formed
a square matrix of the type (n+m) X (n+m) by the addition of m horizontal rows to the
matrix |z; if, in the development of the determinant of this matrix, the coefficient of

X, be the determinant
r=1,2,3,...m
xn+r, msld

s=1,2,3,...m

(15 s + -+ o, denoting m of the numbers 1, 2, ... n4m), we may represent X; and C;
by the symbols [y, tyy . .. ] and (y, g, - . . ) respectively; observing, however, that
if two of the numbers 1> s, - - . are equal, the value zero is to be attributed to each of
these symbols.

If » denote one of the numbers 1, 2, 3, ... n, the determinants of the matrix obtained

* CrrLir’s Journal, vol. xl. p. 264; see also E1seNsTEIN, ibid. vol. xxviil. p. 327.
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by adding the horizontal row
xv, 1 xr, 2y v 'xr,n-t-m

to the matrix nx(7;+m)

, are idehticall‘y equal to zero. We thus obtain Ax%

equations of the form -

(% oy gy« v+ o] =0, . . . . . . . (31.)
fors Py -+ Pm representing any combination of m—1 of the numbers 1, 2, 3, ... m-n.
In connexion with these equations, consider also the similarly formed system,

ST (3 o gy - - o) y=0. . o o o0 0L (82)

This system, which is in appearance redundant (containing AX — T equations, and

only m-n indeterminates), is in reality defective, and is equlvalent to m independent
equations. For if (k,, %, ... %,) be one of the given numbers C which is not equal to
zero, the partial system of m equations

o (z, koko o by kinyy oo Koy )y =0

j=1,2,3,...m }
is certainly an independent system, because the determinant of the coefficients of
Yo Yo+ Yi, 18 (Bis Ky .. k)", and is therefore different from zero. Again, every equa-
tion of (32.) which is not already comprised in (38.), may be obtained by linearly com-
bining the equations of that partial system. To verify this assertion, let

2[4, s tigy v o Moy |, ,-=0}
r=1,2,3,...n

be the system of # equations obtained by attributing to 7 the # values of which it is

susceptible in any one of the equations (31.). Eliminating from this system those n—1

determinants [4, w,, s, .. tn—,] in which ¢ has a value nof included in a set of m-1

numbers vy, vy, . . . ¥4y, arbitrarily selected from the series 1, 2, 3, ... n4m, we obtain a

relation, which may be expressed in the form v

(33.)

(34.)

.__m+1( —1) [Vn Lory gy <o lwm—l] X D’n Vas oo Vicys Vigry oo vm+I]=03 .. (85
. mna> . .
representing WJT) equations, since the sets

Pors flogy e oo Py
Vis Vaseee Vi

may respectively denote any sets of m—1 and m-1 numbers taken from the series
1,2,... m+n Since (35.) is of the form ®(X,, X,, ... X,)=0, we may at once infer
the corresponding relation,

t_m“( 1) (”n {ory gy « - gu’m—l)x ("19 Voy eve Viys Vigny oo ”m+1)=0a . (36)

by means of which any one of the equations (32.) may be deduced from the equations of
the partial system (83.). Thus, if we multiply the equations of that system taken in
212
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order, by the detcrminants (—1Y(%;, Ay, ky, ... h,,_,), and add the results, we obtain
(B Foas oo ) Z20™ (4 Py Py o B Yy =0,

i. e. since (%,, £y, ... k) is not zero,
Si=ntm (g by By o By )y =0,

i=1
The system (32.) is therefore equivalent to a system of m independent equations.

Let [mx(m-l—n) represent the matrix of (33.), or of any other independent system
| Y

equivalent to (32.) (the determinants of all such matrices are proportional); let
I',, T, ... T, be the determinants of |y|; |g| and E,, E,, ... E, the matrix and deter-
minants of the system similarly derived from (81.). By the theorem of art. 7, we have

g
@

XE=SExll . . . . . . . . . . (37)

or observing that lil:E.EX, and that (37) is an identity of the form ®=0,
SICx|=2I"%x|C, . . . . . . . . . . (38)

where |C| symbolizes the numbers C,, C,, ... C,, which correspond to the determinants of
ly| in the same inverse order in which in equation (37.) the determinants of || corre-

nx(rg,+n)

|

MXM=H%w,.. N 8

spond to those of [¢. But if
of (82.) or (33.), we have also

represent a system of fundamental solutions

whence, combining (88.) and (39.), and representing the greatest common divisor of

C, C,,...C, by ¢, we find
exlg=/Cl. . . . . . . . . . . . . (40)

1f, then, |¢| denote any square matrix of determinant ¢, and of the type n X n, the formula
lef X [6]] contains the complete solution of the problem.
If  represent the greatest divisor of |y|, we infer from (38.)

eXlyl=yx|Ch . . . . . o o o oL L (41)
whence, if |y be a prime matrix of the type m X (m-n) satisfying the equation

l|=v x| (see art. 3),
ICl=exly. o e e s (42)

The preceding analysis enables us therefore to ebtain simultaneously the representation
of the determinants |C| as the determinants of two complementary matrices, of the types
nx (m4n) and m X (m+n) respectively. We have thus two distinct methods of arriving
at the solution of the problem, of which one requires the determination of a set of
fundamental solutions of a system of linear equations; the other the reduction (by the
method of art. 3) of a given matrix to a prime matrix. The greatest divisor of [y,

we find
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which we have represented by v, is evidently (%, &,,... &,)"" X e. If, therefore, C, one
of the given numbers C,, C,,... C,, be a unit, we have only to take C for (&, %, ... l;m),
and we shall immediately obtain a matrix [y| of the type mX(m-n) satisfying the

equation
: =L

And similarly might a matrix of the type n X (m--n), satisfying the same equation, be
written down without calculation.

Art. 9. The importance of the case, in which m=1, is so great, that we may be
allowed to point out the identity of the solution obtained by the preceding method
with that already given by M. HeErMITE. Let, then, C,, C,, ... C,,, represent the deter-
minants of a matrix of the type nX (n41) taken in their natural order (4. e. so taken
that if the matrix be completed by an additicnal row of constituents,

Cyy Cgy v v Cpyyys
the value of its determinant would be ’

046G+ 6.Cot ... 0,1,Coa)
We have then to obtain a set of fundamental solutions of the equation
Cy+Co+Cyt.. . 4Copyn=0. . . . . . (48)

Such a set may always be obtained by the following particular method. Supposing
that C, is not zero, consider the equations

O=ny1+02yz 7
0=Cign+ Coirt-Cogs C ()
0=C,9,+Coga+Csgst - .- +Cota Yo j

and take a particular solution of each of them, assigning to the last indeterminate in
each, the least value (zero excepted) of which it is susceptible. If we denote by A, the
greatest common divisor of C,, C,, ... C,, so that A, =C,, A,,,=c¢, it is evident that the
value of #,,, in the equation k

Cx.%“‘cayz'l' . +Ok+1;yk41=0

’ k
will be §.~; and if in the same equation we represent the values of y,, #,, ... 7, by
&+l

. P10 Ty 00 T, 3 e P, 1o
the matrix
A, '

rl) 1> Eﬂ 3 O’ 0 . . » B . O
A,

Ta, 1 7'2,232"50 P |
3

8 o (45)
T ay P50 Ty gy A, 0
0
- A
To, 19 Toy2s P35 T'nya N ”1
‘ .
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will represent a set of fundamental solutions of (43.). For, in the first place, it repre-

sents a set of independent solutions; because its first determinant is 4 X%—QX . ._Aﬁ"_
3 n+1
Ay

C . . . )
A OF 7’ ; therefore its determinants are proportional to C,, C,, ... &c.; or since
n+1

3

or
. C, )
the first of them is —, they are respectively equal to the numbers

! C
G, G G Can,
4 [4 c c
which admit of no common divisor.

To obtain a set of values for the constituents 7; ;, which occur in the matrix (45.), we
may form the series of equations

A Cz+.”'1A1=A2
Ay 03+P°2A2=A3 % . (46.)
A’n—lcn-l_fbnAn:An&l)

It will then be found that the equations (44.) are satisfied by the values of » comprised

in the formula
. Ci+l

Ti,j= —Aj—l ‘Ulj e Iu'i—l Ai+] [jé?;] ;y . . . . . . (47.)

and on substituting these values in the matrix (45.), it will coincide, after an unim-
portant modification, with that occurring in M. HErRMITE’S solution of the problem.

But, in practice, the simplest method of obtaining a solution of the problem con-
sidered in this article, is to solve the equation (43.) by EvLER’S method, and to employ
in the place of the matrix (45.), the matrix of the set of fundamental solutions thus
obtained (see art. 6).

Art. 10. Another problem, closely connected with the preceding, and of no less fre-
quent application, has also been completely solved by M. HERMITE *; but as it may serve
to illustrate the utility of the methods employed in this paper, we shall venture to resume
and generalize it here. The problem is

“Given a set of n4-1 numbers C,, C,,...C,,, without any common divisor, to assign
all the matrices ||| of the type %X (n+41) which satisfy the equation

Hﬂy
€T

Let ¢, ¢, ... ¢, be any particular solution of the equation

CoitCt o +Cgun=1 . . . . . . . (48)

(which is always possible because C,, C,, .. C,,, are relatively prime); and let || repre-
sent a set of fundamental solutions of the equation

c,g/,+o,g/2+/...+on+, =0 . .o (49)

* LIoUvVILLE, vol. xiv. p. 21.
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Then, if |u] represent any unit-matrix of the type 7 Xn, and A,, A,, ... A, absolutely inde-
terminate integers, the complete solution of the problem is contained in the formula

e X s, 142G
i=1,2,8...n % . . . . . . . . . (50)

For if |2 be any one of the matrices contained in that formula, it is readily seen that
ig S‘=Cxcl+0202+ . +Cn+lcn+l=1'

Conversely, if |2 be a matrix satisfying the equation

g’:l, l#| is included in the

formula (50.). To show this, we observe that the complete solution of equation (48.) is
contained in the formula

Y=o S0, A j=1, 2 ...n4+1, . . . . . . (5L)
in which ||[d] is any set of fundamental solutions of the equation
Coy+Crt . ... +Coiun=0, . . . . . . . (52)

and A, A, .. A, are indeterminate integers. The complete solution of the same equa-
tion (48.) is therefore supplied by the determinants of the matrix |y, ;+ACj. For those
determinants may be represented by the formula

G+, S g=1, 2, 8, ... n+1,
in which [4,J] symbolizes a first minor of the determinant m, so that
1
(i dl=g,
But the numbers [, 17, [4, 2], . .. [¢; n+1] satisfy (52.) for every value of ¢; and, since
}S'#l, the determinants of the matrix
[ . (53)

are the numbefs C,, C,, ... C,,,, and are therefore relatively prime. It follows from
this that (53.) represents a set of fundamental solutions of (52.); ¢. e. that the com-
plete solution of (48.) is represented by the determinants of |y, ;4-AC). If then |a] be

a matrix satisfying the equation SI:L since the determinants of |#] evidently satisfy (48.),

values can be assigned o A;, Ay, ... 2, which shall verify the equation
i+ Cl=lal,

lel=ledl X s, s +-2Col
|| denoting a unit-matrix, 4. e. || is one of the matrices included in the formula (50.).
‘The result incidentally obtained in the foregoing analysis, that the complete solution

whence 1t follows that
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of an equation of the form
Ca+Cua+..... +Coi i =1

can be exhibited in the determinantal form (50.), is occasionally useful.
The preceding problem is a particular case of the following more general enunciation :—
“ Given a prime matrix |C| of the type m X (m—-n), to find all the matrices |2|| of the
type n X (m-+n) which satisfy the equation

C_y»
A:L N T8

Let |y| be a matrix which satisfies (94.), let the numbers w, ; represent absolute inde-
terminates, and |[u| any unit-matrix; the complete solution of the problem is contained
in the formula

le|l=lu| X y+ZpC, . . . . . . . . . . (BB)
where |y+ ZuC|| represents the matrix,

O=m =
“71',;“"29:1('%0 0,5 .7:1 2 3 +m,

For if ||z| be a matrix satisfying the equation (54.), we have

jﬂ=1=F;
x y

R

|4l denoting a unit of the type (m-+n) X (m-+mn). Butbecause the first m horizontal rows

and consequently

in

S” and ,JS” are identical, it is evident that
1

except when 7=j, in which case

Uy, =0y 3= . . s Uy n=1.
The unit-matrix [v| therefore arises from the composition of two unit-matrices of the
forms
,0,0 ,..0 ,0,0,..0
,0,0,..0
,0,0,..0

oS O
S
. = O
S O

7\1,13 7\1,23 )\1,:” . 7\1 my ]- O .. 0
7\2, 19 7\2,29 7\2,33 . 7\2,m’ Oa la .. 0

7\7;, 1 An,m 7\n,3a . 7\n,m, O: 07 .1
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and 1, 0 0,..0 ,0 ,..0

0, 0, Oauul,nux,za--ul,n

0, 0, O,.. U, 15 U, 95 o« Uy p

‘Oa O’ O,“un,nun,za-'un,n

|[A] denoting a matrix of the type »Xm of which the constituents may be any numbers
whatever, and |y a unit-matrix of the type nXn. If for [A| we substitute the matrix

o=l <[]
it is readily seen that we may invert the order of the factors in the expression of [jvf; so
that, using an abbreviated notation, the signification of which is evident, we may write
either

1,0]_]1, 0

=3 21[o; o
or

1, 0,1, 0

=l <
Substituting the latter expression of v in the equation

C C
=ty

we immediately infer
Jal=e]| < lly 42,

Every matrix satisfying the equation Sl:l is therefore comprised in the formula (55.);

b

and since it is evident, conversely, that every matrix comprised in (55.) satisfies the
equation, that formula contains the complete solution of the question.

A particular solution of the problem (which may be taken for |y|) can be obtained
as follows :—Complete the matrix ||C|| by any » horizontal rows of constituents which do
not cause the determinant of the resulting matrix to vanish. From this matrix a prime
(4. e. a unit) matrix of the same type is to be deduced by the method of art. 3, a reduc-
tion which can always be effected without changing the prime matrix ||C|.

Art. 11. The consideration of sets of fundamental solutions of linear systems is also
of use in the theory of indeterminate systems containing terms not affected by any inde-

torminate. Lot AL B A st A= (e
1=1,2,3,...n
represent such a system; its general solution will assume the form
@=at+ o2y Lo Oy, 9
k=1,2,3, ... n+m}
MDCCCLXL 2vu

. (7))
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where a,, @,, ... @,,,,1s a particular solution of (66.), w,, w,, ... w,, indeterminate numbers,
and [l a set of fundamental solutions of the system

A oA vt ’+Ai,n+ma7n+m=01' S . (B8)
i=1,2,3,...n J

Whenever, therefore, the proposed system is resoluble, its complete solution involves
m indeterminates; but in order that it should be resoluble, a certain condition must
be satisfied by its coefficients. This condition is, ‘that the greatest divisors of its
augmented and unaugmented matrices must be equal*.” We shall call these divisors D
and D, respectively, representing the matrices themselves by |A| and ||A,|. That the
condition is necessary may be seen by eliminating in turn every combination of n—1
indeterminates from (56). We thus find that every determinant of ||A| is divisible by
D,, i. e. that D is divisible by D,; but evidently D divides D,, so that D,=D. To show
that the condition is sufficient, as well as necessary, consider the system

4‘&,-’0.%'0+A£’1.'L'1+A,-,2w2+.. . .+.A.i,n+mxn+m=0}’ . . . . (59.)
=1,2,8,...n
and let i(m'i-l) X gn-{—m—}—l)i represent a set of its fundamental solutions. To say that

(56.) is resoluble, is the same thing as to say that (569.) admits of solutions in which the
value of &, is unity; and (59.) will not, or will admit of such solutions according as
81,0y 85,05 -+ - 0, do, or do not admit of any common divisor beside unity. But, by the
theorem of art. 7, those determinants of |4 into which the column 6, ,, 6, , . .. enters,
are equal to the determinants of |A,[, taken in a proper order and divided by D. If
D=D,, the determinants of |A,|, divided by D, are relatively prime, and consequently
those determinants of ||| which contain 8, 4, 8, o, . . . 6, , are also relatively prime; a con-
clusion which implies that 8, ,, 8, ,, ... 6,, , are themselves relatively prime, <. e. that the
system (56.) is resoluble. '

This criterion is not immediately applicable if the system (56.) be not independent,
i. e. if the determinants of its augmented matrix |[A]| be all equal to zero. But it may

* [This Theorem has already been given by M. Tanaz Heerr (Memoirs of the Vienna Academy, vol. xiv.
second part, p. 111). I regret that in the abstract of the present paper, which has been inserted in the
¢ Proceedings of the Royal Society,” no reference was made to M. Heerr’s Memoir, with the contents of
which I was unacquainted, at the time at which that abstract was prepared. M.Hzerr’s demonstration
(adapted to the terminology here employed) is, in the main, as follows. (1) If the unaugmented matrix of
an indeterminate system be prime, the system is always resoluble. Tor every determinate system, of which
the matrix is a unit-matrix, is resoluble in integral numbers; and we may suppose the given indeterminate
system to form part of such a determinate system (see art. 10, supra). (2) The equation [|A]|=|D| x||A"],
in which [[D|| is a square matrix, having D for its determinant, and |A'| a prime matrix of the same type as
lA]l, is always resoluble (see art. 3). We can therefore replace the given system (56.) by a system of
which the augmented matrix is [A'], and which is resoluble or irresoluble at the same time with the given
system. But if Dy=D, the unaugmented matrix of this derived system is prime; 4. e. if Dy=D, the pro-
posed system is resoluble. (8) That the condition is necessary as well as sufficient may be proved as in the
text.—Sept. 1861, H. J. 8. §.]
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be applied to any independent system, equivalent to the proposed system, and deduced
linearly from it.

If we represent by D, the greatest divisor of the matrix, deduced from the matrix of
(69.) by omitting from it the column A, ,, A, ;, ... A, ;, We may enunciate the follow-
ing proposition :—

“In every solution of the system (59.), the value of a is divisible by %; and, con-

versely, a solution of that system can always be assigned in which a; shall have any

given value divisible by %’.”

It will be seen that the solution of (56.) depends, first, on the solution of (59.), and,
secondly, on that of the indeterminate equation

0240, 0t . 0 o= . . . . . . (60)

If we represent the values of the indeterminates in this equation as the determinants of
the matrix
1=1,2,3,...m

;w6
ll'}’z,;'}’{‘bz 7 ” ,7=1’ 2, ... m—l—l

(see art. 10), we may express the most general values of the indeterminates which
satisfy (66.) in the determinantal form

el,k 62,/: em+l,k
Tr=| 71,1 +{1‘1 91, 0 71,2 +f"1 92, 0y see v Y1, ma1 +F°x 6m+1,o
Y21 +("2 61, o 72,2 +("2 62, 0y v v e v Y2, m+1 +F‘z 6m—i-l,o (61)
7m,1+{l‘m 61,0’ 7m,2+|u’m 62,0, """ 'Ym, m+l+(J‘m 0m+l,0

Art. 12. We shall now indicate an important transformation of which any square
matrix of integral numbers is susceptible. 'We begin with the following theorem :—

“If a given rectangular matrix be premultiplied by a unit matrix, the greatest com-
mon divisor of any vertical column of minor determinants is the same in the resulting
as in the given matrix.”

For it is evident that any minor, either in the given or in the resulting matrix, is an
integral and linear function of the minors formed from the same vertical columns in the
other matrix.

Similarly, it may be shown that

“When a square matrix is post-multiplied by any prime rectangular matrix, the
greatest common divisor of any horizontal row of minors is the same in the resulting
rectangular matrix as in the given square matrix.”

For if

nx (T_m)”___“n X n“ v ”n X (76+m)”,
2v2



312 MR. H. J. S. SMITH ON SYSTEMS OF LINEAR

where ||C] is a prime matrix, it is clear that every minor of |A] is a linear function of the
minors formed from the same horizontal rows of |B|; so that if @ and & be the greatest
common divisors of any corresponding horizontal rows of minors in those two matrices,
@ is divisible by 4. But again, if § be any one of the determinants of |C|, and s be the
order of the minors under consideration, any minor of |B|, after multiplication by ¢,
may be expressed as a linear function of a certain group of the minors taken from the
same horizontal rows of ||[A|. Consequently 8° X 4 is divisible by @; or, since § may have
any one of a series of values which are relatively prime, 4 is divisible by ¢, i. e. b=a.

By combining these results we obtain the theorem.

“If ¥y Vuot> Vas --- V; Tepresent the greatest common divisors of all the minors of
order n, n—1, ... 1, respectively which can be formed out of a given square matrix, these
numbers will remain unchanged, when the given matrix is premultiplied by any unit-
matrix, and post-multiplied by any prime matrix whatsoever.”

!
Art. 13, Let 6, the determinant of the square matrix In;:%”, be a positive number,

different from zero. It may be shown that by post-multiplication with a properly
assumed unit ||e, the matrix |@| can be reduced to the form

oy Tryos Prya e o v Ty
0af‘°237'2,3~~~-7'2,n
0,0 , u, R T T (62.)
0,0 ,0 ....m,

where @y, ph, ... b, are positive numbers, such that w, X, X.. X @, =0, and the consti-
tuents #; , satisfy the inequalities

0<Pyu<fhe + + « « o . . . . (63)

This was first observed by Gavss for the case n=2; by SEEBER for n=3; and the
general theorem has been enunciated by M. HermiTE*. Its precise statement is

“ Every matrix of the type n Xn is equivalent (by post-multiplication) to one, and only
one, of the reduced matrices included in the formula (62.).”

To show this, let v, ,, v, ,,...v, , be the integral and relatively prime numbers which
satisfy the equations

@; 1 /vl,l+ai.27 /02,1+-°-“i,m 'vn,1=0} (64)
i=2,8,...1 o ‘
and the inequality
) @y, 15 Ul,l+al,2? v?,l_{_“‘al,n) 'vn,1>0~
Then it is evident that, if o] be a unit-matrix of which v, ,, vy ,, ..., , form the first

column, the matrix |a|X [v]| will assume the form

* (Gravuss, Disq. Arith. art. 218; SwEsER, “ Untersuchungen ueber die Eigenschaften der positiven
terniren quadratischen Formen’ (Mannheim, 1831), art. 81; M. Hermrre, CRELLE, vol. xli. p. 192.
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' (228} 51,2, bx,s; "’bl,n
0, by9 0300205,
0y by Dojgreevbynule =+ + =+ + = « - (65)

0, byoy Buas e buy |
where Wy =0a, ;, V1, +a1, 25 Vg, 1+ el py Up qe
If this matrix be post-multiplied by the unit,
1, by k... k,
0,1,0,...0
0,0,1,...0

0,0,0,...1
the constituents &, ; will be changed into &, ;4p,k,, while all the other constituents will

remain unaltered; so that by assigning proper values to the numbers 4,... %,, we may
bring the given matrix |je| into the form

Py Ties Tygs0es Foyn
Oa b2,2a 62,33---bz,n
Oa ba,za bs,sa'--b3,n

0, bus boysrenebnn

where 7, ; verifies the inequality
' 0=r, ; <p.

From this it is easy to infer that if a matrix of the type (n—1)X (n—1) can be reduced
to the form (62.), the same reduction is possible for a matrix of the type n X n, 1. e. since
that reduction is possible when =1, n=2, .. it is possible for every value of n.

To prove that |e| is equivalent (by post-multiplication) to only one of the reduced
matrices (62.), it is sufficient to show that no two reduced matrices can be equivalent. If
|« and || be two reduced matrices, and [v] a unit-matrix, such that |la] X [v| =]/, it may
be inferred, by comparing the corresponding constituents of the two matrices || X |lv] and
||| (beginning with the lowest horizontal rows of each and proceeding upwards), that
all the constituents of o] which lie below its principal diameter are zero; and conse-
quently that the constituents of the principal diameter itself are all positive units.
Further, that the constituents above the principal diameter of [v| are likewise zero, may
be established (for each line of constituents parallel to the diameter, beginning with
that nearest to it) by means of the inequalities (63.) which are satisfied by the consti-
tuents both of o and ¢ It thus appears that two reduced matrices cannot be equi-
valent, without being identical. It will be observed that the reducing unit is unique;
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i. e. that only one post-multiplying unit can be assigned by which a given matrix can be
reduced to the form (62.).

If instead of reducing the given matrix || by post-multiplication we employ a pre-
multiplying unit, we obtain the following theorem :—

*“ Every matrix of the type n X n and of determinant 4 is equivalent (by pre-multipli-
cation) to one, and only one of the matrices included in the formula (62.), in which
ory thy . - ATE positive, oy o - - =0, and 7, , satisfies the inequality

0=r ,<wm.” . . . . . . . . . . (66.)

Arxt. 14*. The transformation to which we have referred in art. 12 is obtained by
employing simultaneously a pre-multiplying and a post-multiplying unit-matrix. It is
expressed by the equation

o=l | T T B, (6T)

in which [¢| is a given square matrix of the type #n X =, |o| and |8] are unit-matrices, and
Vi Vo1 Vaoss +++ Vis Vo are the determinant and greatest common divisors of the
minor determinants of |, so that, in particular, v, is the determinant of ||a|, v,., the
greatest common divisor of its minor determinants of order n—1, v, the greatest
common divisor of its constituents, and y,=1. The units |«| and [|3] are not abso-
lutely determined, but admit, when %2>1, of an infinite number of different values.
If n=1, it is evident that the formula (67.) is verified ; for we have the identical equa-

tion “a”:“l“x x[1]. It is therefore sufficient to show that, if the transformation

\4
Vo

indicated in the formula can be effected for matrices of the type (n—1)x(n—1), it
can also be effected for matrices of the type nxXn. The demonstration depends on an
elementary principle, which it is worth while to enunciate separately.

“H Ui=Ai, 1“'1+'Ai, A +Ai, n+m'1"n+m71
- i=1,2,3,...m J
denote a system of n linear functions of n-4-m indeterminates, (m>0),.and if the consti-
tuents of the matrix ||A| do not admit of any common divisor, it is always possible to
assign integral values to @, & ... Tpim which shall render U,, U,, ... U, relatively
prime.”

For, in the first place, we can obtain values for U,, U,, ... U,, which shall not have
any common divisor with a given number M. Let p, ¢, ... be the different prime
divisors of M; one at least of the constituents of |A[, for example A, ;, is prime to p.
Attributing to ; a value prime to p, and values divisible by p to the remaining indeter-
minates, we shall obtain for U, a value which is certainly prime to p. Similarly, by sub-
jecting the indeterminates to proper congruential conditions with respect to the modules
¢ 7, ..., we can render one, at least, of the functions U prime to ¢, one prime to 7, and

(68.)

* [This article has been in great part rewritten since the paper was read. The demonstration is not
essentially changed, but is presented in what seems to be a simpler form.—Sept. 1861, H. J. 8. 8.]
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S0 on; 4. e. since we can assign to the indeterminates values simultaneously satisfying
all these congruential conditions, we can giVe to U, U, ... U, values the greatest
common divisor of which is prime to M. Let D, be the greatest divisor of |A], D,_,
the greatest common divisor of the first minors of |A||; and let C,, C,, ... C, be a set of
simultaneous values of U,, U,, ... U, havinga greafest common divisor ¢, which is prime

D, . .
to . Since the equations

n—1
A At F A i nnan=C;
1=1,2,3,...n
are resoluble, it will follow from the condition of resolubility (see art. 11), that the
determinants of its augmented matrix, and in particular those which contain the column
C, G, ... C,, are divisible by D,. Let dX¢XD,_, be the greatest common divisor of
D,
D,/

these last determinants; then dx¢XxD,_, is divisible by D,, ¢. e. § is divisible by
It appears from this, that the condition of resolubility is satisfied by the system

C,
Ai, 1‘T1+Ai, e +Ai, n+mxn+m='c_z’

i=1,2,3,...m,
that is to say, it is possible to obtain a simultaneous system of relatively prime values
for U,, U, ... U,.
To apply this principle to the transformation of the matrix [af, let

1 dvy,
(%)= de. Coe e (89)

The constituents of the matrix |[«]] do not admit of any common divisor; consequently,
in the system

(o100, (s, Jba - - A, Jbn = l’}’ (70.)

i=1,2,3,...n
we can assign values to b, ,, b, y, ... b, ,, which shall render v, ,, u, i, ... u,,, relatively
prime.  Let [ju| denote a unit-matrix of which the first column is w, ,, %y, ... %, ,;
and |§] a square matrix of which the first column is &, ,, b,,,, ... b, ;, and of which the
remaining constituents are defined by the equations
by j=a; W, i+, s 4 . a0, ~}
i=1,2,8,...7n r oo (T
j::: 2, 3, oo T J
Observing that the systems (69.) and (70.) involve the inverse system,

\%
ai, Iulv,‘! +ai, 2“2, 1+ AR +ai, nun, l=an‘-l bi, 19\]

Lo (12)
i=1,2,3,...n, J
we infer that the matrices [u] and |§] verify the equation
i =pix |2 11

Vn—-1
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v
L1, ...

n—1

that v,_, is the determinant of [§|; let that matrix be reduced by premultiplication
with a unit-matrix; and let

oy o N (25

where [v] is the reducing unit, and |y,_,| the reduced matrix,

in which denotes a matrix of the type nXn. It follows from (73.)

rs Ty Tr,300Tyn

0, oy s 795075,

0, 0 4 phy «ou?yn | (75.)
0,0,0 ...p,
so that (73.) assumes the form
=P [9acd ¢ [ 1 L xR o (16)

It may be proved that in (75.) w,=1, r, ,=0, r, ;=0..7, ,=0. For since the matrix

oo

greatest common divisor of the first minors of []vn_,”X”-V—VL, 1,1, ” Therefore v,.,
n—1

is derived from ||¢| by multiplication with unit-matrices, v,-, is the

divides p, X s X .. X t,, which is one of those minors; but also v,_,=w, X @, .. X ,; 7. €.

assumes the form

=1, iy X pos X .. X 0,=V¥,,_;, and the product an_lliXHVV” 1,1,
n—1

Vn
Vot P20 T30 000 Ty

0 s Mg 5 To 39 v00 T n

0,0 s M3 50Ty

0 ,0,0 ,...pm,

One of the minors of this matrix is 7, , X ps. . . X g, Which cannot be divisible by v,_,
OF oy X 3 X « - « X fho, Unless 7, , is a multiple of u,; but r, , < w,, because |v,_,| is reduced,
therefore r, ,=0. Similarly, it may successively be shown that #, ;=0...7, ,=0. Now
if the matrix :
Was Ta g5 00 Top
0 s 3 9«0 T3y

(77.)

0,0 ,...p0,
which is of the type (n—1)X (rn—1), be reduced to the form
V-1 Va-2 Vi

1
Va2’ Va-3’ """ Vo

<

?

<]
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in which v,_s, V,_s ... represent the greatest common divisors of the minors of (77.),
we may replace |v,,| by the matrix

10 a1 Va
Iwandl=[g 1 T2t T2 Tl
where 39 and %0, denote unit-matrices of the type nXn, the forms of which are

sufficiently indicated by the symbols themselves. Hence, observing that

oulxfeuze 1 I— o Pelowd
and that
V-1 Va2 —|| YV Vam Vi
ll’ Va-2 Va3 = ‘{X Vn— “ an—l’ Va2’ """ Vol
we obtain, from (76.), _
' 1 110 -
=l | 22, Ze=, ...%\]XEIO u,“x}[u I

or more simply,

Van Vn— A4
fal=lelx |G T2 - xI8k
It has, however, still to be shown that W,_,, V._s ... which have been defined with
reference to the matrix (77.) are the greatest common divisors of the successive systems
of minors of |a|. These greatest common divisors are the same for the given matrix ||

Va Va1 El . . . ) . o qe . .
Vot Ve Voh which is derived from it by multiplication with

2

and for the matrix

Vn, V"‘, . .E

Va-1 Vn-2 ) Vo!
. . . so. Va Vn—-2 _, Vn-3 Vl VaX Va-2 . Va=1 7. . Va
lar, it divides R =
in particular, Vn_lxvn_sx >< >< Vo Vi i.e o~ divides "
Again, V,_1, Vaes, --- V1> Vo Which are the determinant and greatest common divisors
of the minors of (77.), are also the determinant and greatest common divisors of the

minors of the matrix

unit-matrices; consequently v,_, divides every first minor of

, and,

Va-1 Ly Vn—2 wa
Vn—2 Vn—s ”.Vo

R 13

so that if s=n—2, v, divides every minor of order s in (78.), and, consequently, the minor

Vs+1, Vs—1 , Vs—2 Vi, Vs q: . Vs+1 . .
- xvs_ngs_sx s XG5 oF Yo d1v1des‘~——va . It thus appears that in the series of

numbers

" = 3 eesna

Va  Va- y_g’ Vi
Vn-1 Va—2 Vi Vo

each term is divisible by that which comes after it. Every product of s terms of that

series is therefore divisible by the product x Ve X. Vi v,; or, which is the

V V-2 W
same thing, v, is the greatest common diVlSOl of the minors of order s in the reduced
matrix (78.), and therefore in the given matrix |a].
MDCCCLXI. 2x
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Art. 15. If the proposed matrix |lo| be not square, but of the type nX (n-m), let
|| =|Iw.| X ||, where [¢/| is a prime matrix of the same type as e, and ||y,| a square
matrix, of which the determinant is v,, the greatest divisor of |a|. Then if |v,| be
expressed in the form

x| 2 = 2
and if, for brevity, we write |V for Uu]lx la'], we obtain for |a| the expression
]{a[}—|{v|><” o, Tl LTV L (79)

The numbers v,, V,_,, ..., which are the greatest common divisors of the minors of
|74], are also by the theorem of art. 12, the greatest common divisors of the minors

of |a] We see therefore that —Y= is always divisible by ¥Y:=!, in the case of an oblong

Vs—1 Vs—2

as well as a square matrix.
Art. 16. To show still more clearly the nature of the quotlents Vs we add the

s—1

following proposition :—

“If in any rectangular matrix we divide each minor determinant of order s by the
greatest common divisor of its own first minors, the greatest common divisor of all the
VS bk

3—1

quotients thus obtained is =

defined as the quotlent of one greatest common divisor, divided by another.

To establish its truth we may first consider the quotient in any rectangular

n—1
matrix [|A]| of the type nX (m+n). Let » denote the greatest common divisor of the
quotients obtained by dividing each determinant of ||A| by the greatest common divisor
of the first minors of that determinant: we have then to show that

Va

Vﬂ_}:w.
Since the greatest common divisor of any vertical column of minors in ||A]| is not
altered by premultiplication with a unit-matrix, it is evident that » as well as Z_’_‘l
will remain unchanged by that operation. - If, therefore,
[Al=plx | et TV (19)

where || is a unit, and |[V] a prime matrix, we may consider instead of ||A], the simpler
matrix :
Yo, YootV N L)
o o E X[V . . . . .. (80)

Let |4, [4,], - . . &c. be the different square matrices of !]Vﬂ ; 8y by ... their determi-
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nants; +; the greatest common divisor of those first minors in 4] which do not contain

the constituents of its uppermost row, so that \% is integral ; lastly, let o, be the quotient

obtained by dividing the determinant

Y, Vasd ...E“xa. R
o e g X e (81.)
by the greatest common divisor of its first minors, so that » is the greatest common
divisor of @,, w,.... Now the greatest common divisor of the first minors of (81.) is

evidently divisible by v,_,, and divides v,_, X J; (because v,_,4; is the greatest common
divisor of one of its rows of minors). Consequently », divides v,4; +v,_,, and is divisible
bY Vi~ Va1 Therefore VV"

is a common divisor of certain numbers respectively

-1

dividing the numbers @, w,, . .., viz. the numbers an

6 . .
.= it 1s also (because 4,, 4,... are
lx’i 1y Y2

n—1
relatively prime) the greatest common divisor of the numbers ;Vl 0, in which the same
n—1 N

Vn

numbers »; are respectively contained; <. e.

- is the greatest common divisor of the
numbers #,, », . . . themselves, or

Van

V-1
By the aid of this particular case of the theorem the general proposition itself may be
proved as follows :—

If in any rectangular matrix of the type n X (m-+n) we propose to determine (,, the
greatest common divisor of the quotients obtained by dividing each minor determinant
of order s, by the greatest common divisor of its own first minors, we may begin by
selecting any s vertical columns [s<#], and forming the proper quotient for each deter-
minant of order s, contained in this partial matrix of the type'nxs. Let 2; denote the
greatest common divisor of these quotients; then, as we have just seen, A, is the greatest
common divisor of all the determinants of the partial matrix, divided by the greatest
common divisor of all its first minors. Hence (by art. 12) a, will remain unchanged
when the given matrix is premultiplied by a unit-matrix. But 2, is the greatest
common divisor of all the divisors A,, 2,. .. corresponding to every group of s vertical
columns ; therefore (2, is itself unchanged by premultiplication. Similarly, if a square
matrix be post-multiplied by a rectangular prime matrix, it may be shown that , is
the same for the given square matrix, and for the resulting rectangular matrix. Hence
if, as before,

=uw.

|Al=lelx

l&, .. V1|><||VH,
V-1 Vo

Q, and Yo are the same for ‘V" ) Yool o, Yln and for |[A]. But in the matrix
s—1 \Va—=1 Va—2 Vo!
H_.Y”—, e g—l it is evident that -Y*-and Q, coincide; therefore in any rectangular matrix
V-1 [s) s—1
Ve
VS_I—QS'

2x2
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From the definition of ;V—’— as a greatest common divisor, which we have now obtained,
—1

we infer that if [D| be any matrix containing another matrix |y|, and if D,, D,_, ... v,
V15 - - - be the greatest common divisors of the corresponding minors in |D| and |v|

respectively, not only is v, divisible by D,, and v,_, by D,_,, but also 525- by ]_;)_8_
s—1 s—1
Vs

s—I

It is not difficult to show that in any matrix is the greatest common divisor of

all the quotients obtained by dividing each minor of order s by the greatest common
divisor of its minors of order s—Z%. But as this extension of the preceding result is not
needed in what follows, we may omit it here.

We may add, that the theorem of this article is precisely equivalent to the following,
which may be demonstrated by a different method.

«If P be the highest power of a given prime that divides all the minors of order s
in a given matrix, and if all the minors of order s—1 contained in one particular minor

Is+m 5,

of order s are divisible by P*1"", that minor is itself divisible by P
It should be observed that whenever all the minors of any determinant are zero, the
quotient obtained by dividing the determinant by the greatest common divisor of its
minors is also zero.
Art. 17. These results admit of immediate application to the theory of systems of
linear congruences. The general type of such systems is

Ao +AL ot AL 8=A g mod. M 1

;. 2.
i=1,2,8,...% |’ (82)

and to construct a complete theory of them it is requisite, first, to assign a criterion for
their resolubility or irresolubility ; secondly, when they are resoluble, to investigate the
number of incongruous solutions of which they are susceptible; and, lastly, to exhibit a
method for obtaining all these solutions. We shall first suppose that #'=mn; i.e. that
the proposed system is neither defective nor redundant.

Let D,, D,_, .... Va Va1, ... respectively denote the greatest common divisors of
the determinants and minors of the augmented and unaugmented matrices of the
system (82.); also let 3,, 8,_,, ... 8, denote the greatest common divisors of M with an ,

n—1
of Mwith %—:——:;, ...,and letd,, d,_, ... similarly represent the greatest common divisors of M

. D, , ... D,_ .
with D of M with ﬁn___;’ &c.; then, if d=d,Xd,_, X ....Xd, 5=0,Xd,_,X... XD,

we have the two following theorems: -
* (i.) “The necessary and sufficient condition for the resolubility of the system (81.) is
d=3."
(ii.) “ When this condition is satisfied, the number of its incongruous solutions is d.”
To demonstrate the first of these theorems, we revert to the principle of art. 11,
from which it appears that the necessary and sufficient condition for the resolubility of
the system (82.) is that the greatest divisors of the two matrices
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M,0,0,.0,A,,...A,,

0,M,0,.0,A,, ... A, .,
0,0, M,.0,A, ... Ayn ||. . . . . . . (83)

0,0,0,.M,A,,,... A,
and
M,O,Oa-oan,n'”Al,nH
0,M,0,.0,A,,...A
0,0, M,.0,A, ... Agupn . - . . . . . (84)

0,0,0,. M Ayp... Ay,
are to be equal to one another. Now the first of those greatest common divisors is

evidently the greatest common divisor of
Mn) Mn—l VI’ Mn—2 Vm M M Vn—l? Vn;

which, for brevity, we shall represent by the symbol
MY, My, M2y oo Vs My W] - . . . . . (85)
Let M=PXQXxR ..., P, Q R, ... denoting powers of different primes; we may then,
in (85.), replace M by P, Q, R, ... successively, since
[M*, M*'vy,, ... MV,._., Vo
=[PPy, ... Py, ., v.]X[Q, Q'y, ... V] X. ..

If P divide any one of the numbers vax R 111 VV’ be the least of them that it divides ;
L Al 8§—1

also let P,= fP, ;V-L], so that P,=P, if =s. Then
L t—1

P, Py ... Pvay, Va)

—_ Pn 7n— \%! 7n— Va Vn’
_P‘X[PT’P l'P‘,P 2F1,.... P—l-

=P Pn—l Pn——2V_Q n—sZS ”..YB_
]X[ ’ VI’P v’ v )

observing that %‘ is prime to P [if s>1], and that we may therefore divide the last »

numbers by %—‘ ; and may then omit %—", which is divisible by P*'. Continuing this
1 1
process, we find

[Pn’ Pt Vi o v v+ Pvn—n Vn]

— n—8 - Vl __Vs Vn
PP X B P, P P T
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or, sinc P, and g’*" Votk y Virko , - by P

s—1 Vstk-1' Vstk—a Vs
[P, P v, P vy, oo Py, Vi)
=P XP,XP,... xP,_, xPr—s+
=II}. P,
But 3,=P, X Q;XR;X ...; and consequently the greatest common divisor of the deter-
minants of (83.) is 8, XX ... X3, or 8. Similarly, the greatest divisor of (84.) is

diXdyX ... Xd,or d. The necessary and sufficient condition for the resolubility of
the proposed system of congruences is therefore contained in the formula

d=0".

1t should, however, be observed that, since D_DL divides % (art. 16), d, divides 3,, and
§—1 §—1

therefore the equation
d=>d

involves the coexistence of the n equations

d=d, dy=Y,, ... dy=0 . . . . . . . . (86.)

To investigate the number of solutions of the system (82.), supposed to he resoluble,
let |l and ||G] be two unit-matrices satisfying the equation

el x = T T s (87)
also let
'=ﬁi 1 U :Bz a Vgt Bz,n'vn 1
i=1,2,3,. J
C;i—=0; Al,n+l+“i,2 2, b1 e n n+1]
i=1,%,8,...n. J

Then it is evident that the proposed system of congruences is precisely equivalent to the
system

Vn—i
i=1,2,38,..n

Va—ivr
—— v, ==¢;, mod. M, } (88.)

in such a manner that the two systems are simultaneously resoluble or irresoluble; and
that from any number of incongruous solutions of the one an equal number of incon-
gruous solutions of the other is deducible. But the whole number of incongruous solu-
tions of (88.) is 3, X 8,X... X 8,=0; ¢. e. the number of solutions of the proposed system
is 0.

By the use of the unit-matrices |« and [3] the actual resolution of the proposed
system is made to depend on the resolution of the » congruences contained in (88.).
But this method of solving a system of linear congruences, though very symmetrical,
is perhaps too tedious for the purposes of computation.
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Art. 18*. Let the proposed system of congruences be the defective system
A A ot A A @i =4 imer, MO M,}

i Coe e o (89)

=1, 2, 3,...n,
and let the notation of the last Article be retained. It is easily seen that the condition
of resolubility of the system (89.) is, as before,

- 8=d.

But the number of its incongruous solutions, when that condition is satisfied, is not 3,
but X M™.  For we have seen that we can find a unit-matrix |«], and a prime matrix
|A’| of the type n X (n-+m), satisfying the equation

Jo A= T, Yo, Y Tl

9 bl 'Y—]
[Va—1" Vn-2 Vi Vo
we may therefore replace the system (89.) by a system of the form

-V—‘";——TUiECi,mod.M, o (90)

in which
Ui=A" oAyt Al im Tty
and
Ci::“i, LA, ntmt1 % o Az, ntmb1 e Gy An, ntm1e
If the system (89.) is resoluble, the system (90.) will be so too, and will give d or 8 different
systems of values for U, U,, ... U,, any one of which may be represented by the formula
U,=w,, mod. M,
. } . (91.)
i=1,2,38,...n !

Let us replace the modulus M by P, the highest power of one of its prime divisors.
Since |A'] is a prime matrix, one at least of its determinants, for example, the deter-
minant 24+A] , A, ,... A} ,, is prime to P. It will follow from this that, whatever values
we attribute to &,.1, &pias -+ Tpims €ach of the 3 systems represented by (91.) is resoluble
for the modulus P, and gives, for any assumed values of #,,,, #,19, .- Tpsm, only one set
of values of @,, &, ... #,. Each of those d systems admits, therefore, of P™ solutions for the
modulus P, 4. ¢. of M™ for the modulus M. The system (89.) will consequently admit
of 8 X M™ solutions. |

Let us also consider the redundant system of congruences,

Ai, 1 x1+Ai, 2Tyt +Ai, nanAi, n+13 mod. Ms
i=1,2, 3,... n+m, }
and let D,,, denote the greatest divisor of its augmented matrix. Let p represent a
prime divisor of M, and let p°, p', p* be the highest powers of p, which divide M, D,, V.
respectively. The condition of resolubility of art. 11, applied to the system (92.), con-
sidered with respect to the modulus p°, becomes, after division by p™-1%,

Ly ml,+o Ly+20 (n+1)g
Lphen, 70, ™, e ]}. (93
=[ pin*?, pin-1*, e V9]

* [This article has been added since the paper was read. The theorems contained in it are supplementary
to that of the preceding article. September 1861, H. J. 8. S.]

(92.)
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. ... . . Dyyy .
And this equation is impossible, if 4>1,,,—1,. For L,,—I=I—1I,_, because Dﬂ is
$

divisible by ]—;—)j—l; the inequality, I, <I,40, involves, therefore, the inequalities

In+1 <‘In~s+l+so3 } (94.)
s=1,2,3,... n41,
and these, again, imply the corresponding inequalities
In+l <?:75——s+l+807 } (95.)
s=1,2,3,...n4+1,

because I,_,., =%, ... From (94.)it appears that the value of [ p»*!, p'a™?, .. p®+"*]
is p™+1, and from (95.), that the value of [ p*?, pa-1*®, ... p™*] is a power of p
superior to p's+1; 4. e. the equation (93.) is impossible. 'We thus obtain, as a first con-
dition for the resolubility of the proposed system (92.), the congruence

Dot
SE=0mod M. . . . . . . . . . (%)

When this condition is satisfied, we obtain from (93.), omitting the term p'+: (because
I,+46=1,40), and dividing by p°, the equation of condition,

[pln , _pln_l+0’ pln_2+29, . ]7"9]

=[-pi”, pi”_l+0, pi”_2+29’ . _pno],

which leads us (as in the last article) to the simple formula
d=3.

This equation, therefore, and the congruence (96.), express the necessary and sufficient
conditions for the resolubility of the proposed redundant system.

When these two conditions are simultaneously satisfied, the number of incongruous
solutions is 8. For, if we again consider the proposed system of congruences with
respect to the modulus p°, and select from it a partial system of » congruences such that
the determinants of its augmented matrix, which are necessarily divisible by p's, are not
divisible by any higher power of p, it is readily seen that every set of values of the
indeterminates ,, &,,...2,, which satisfies the partial system, will also (by virtue of
the inequality 4=<1I,,,—1I,) satisfy the remaining congruences of the proposed system.
The number of solutions of the proposed system is therefore the same as that of the
partial system. And because p'» the highest power of p which divides every determinant
of order » in the augmented matrix of the proposed system is also the highest power of
p which divides the augmented matrix of the partial system, it follows from the last
theorem of art. 16, that p'—1, p'a—2, ... .. are the highest powers of p which divide the
corresponding orders of determinants in the latter, as well as in the former matrix. The
number of solutions of the partial system (and consequently of the proposed system),
considered with respect to the modulus 2%, is therefore expressed by the formula

B o
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or, finally, the number of solutions of the proposed system, considered with respect to
M as modulus, is d or .

Art. 19. We shall terminate this paper with an elementary theorem relating to linear
systems of equations, which admits of frequent application in other parts of the theory
of numbers. '

Resuming the notation of art. 11, we may see from the theorem of that article, that
if the system (56.) be resoluble for any given values of the numbers A, ,, A, ,,... A, ,, it
is also resoluble for any other values of those numbers, respectively congruous, for the
modulus D, to the given values; so that the resolubility or irresolubility of the system
depends exclusively on the residues of the numbers A, ,, mod. D. There are D" possible
combinations of these residues, and we shall now show that for D! of them the system.
is resoluble, while for the remaining D"~ (D—1) it is irresoluble. For this purpose let

A=l =t B xiah

|| denoting a unit-matrix, and |A'| a prime matrix of the same type as ||A|, while D,
D,_;, D, D, are of course the greatest common divisors of the determinants and minors

of ||A]. Let also
—"'Ci:Al, 0 Uéi’ 1+A2y 0 wiy 2+ oo +An,0 “i, n*

'The given system is then exactly equivalent to the system

D,_; ' ! :
*ﬁﬁ[Ai, 1 371+Ai,2x2+.~ -+Ai, n+m x“*’”‘]:Ci 1 o (98 )
i=1,2,3,...n.

For the resolubility of this system it is requisite that C; should be divisible by DT;‘—'LI,

and this condition is sufficient as well as necessary, because [A’|is a prime matrix. Now
of the D or D, values, incongruous for the modulus D, which may be attributed to C,

D x Do are divisible by %’"”1 ; whence it is evident that of the D" systems of values which
n—i+1 n—1i

may be attributed to C,, C,, ... C,, D"+ g—;%f%z 5’%:‘, i.e. D" ' render the system
(98.) resoluble. Consequently the given system is also resoluble for D*~*, and no more,
of the systems of values that can be attributed (mod. D) to A, o, Ay ... A, 6

Art. 20. The methods employed in the present paper are without exception such as to
be immediately applicable to any species of complex numbers which admit of resolution
into actual or ideal prime factors. And the greater part of the results at which we have
arrived may be transferred, mutatis mutandis, to the theories of such numbers. For
example, ifin the equations (56.) we suppose the constituents of ||Al| to represent complex
numbers, it will be found that the criterion for the resolubility or irresolubility of the
system, which we have demonstrated in the case of ordinary integers, applies equally in
the case of complex numbers; and again, the condition of resolubility of a system of
congruences of which the modulus as well as the coefficients are complex numbers, is

MDCCCLXI. 27
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precisely the same as in the case of common whole numbers; while the expression for
the number of the solutions (when the condition of resolubility is satisfied) is simply
the norm of m.

But without entering into the developments which this extension of the subject of
this paper would require, we shall confine ourselves to an application of the result of
the last article to a demonstration of the fundamental principle in the arithmetical
theory of complex numbers, that the number of incongruous residues for any complex
modulus is represented by the norm of the modulus.

Let « be one of the roots ,, w, ..., of the equation F,(2)=0, which is supposed to
be of » dimensions, to be irreducible, and to have all its coefficients integral, and that
of its first term unity: Let also ¢,_,(«) be the complex modulus under consideration ;
its norm, which we shall symbolize by N, is defined by the equation

N=N.¢, (2)=T1!="0, ().
Consider the N,,_, residues (incongruous mod. N) which are included in the formula

Ry o(®), -« o o . o oo oL (99)
where R,,_, denotes an integer function of 2n—2 dimensions; it is evident that every
complex number is congrnous, for the modulus ¢,_,(«), to one at least of these N*—!
residues. If R and R' be any two (the same or dlfferent) of the same ‘residues, it is
also plain that the congruence

R=R/, mod. ¢,_,(e)

will, or will not, be satisfied, according as it is, or is not, possible to assign two functions
of #, F,_,(z) and ¢,_,() having integer coefficients, and satisfying the equation
F(2)¢,-o(2)+ Focs(2)@rs(@)=R(2)—R'(x). . . . . (100.)
This equation is equivalent to a system of 2z—1 linear equations, in which the
unknown quantities are the 22—1 coefficients of ¢,_,(x) and F, -(2), and of which the
determinant is the dialytic resultant of F.(z) and ¢,_,(%), ¢. e. the norm of ¢,_,(«) or N.
If then we suppose R(«) to represent any given residue included in the formula (99.), it
will appear from the theorem of the last article that the equation (100.) is resoluble for
Ne»=* different values of R/(z), ¢.e. that every complex number is congruous, for the
modulus @,_,(«), to precisely N**~* of the N**~* residues contained in the formula ( 99.),
or that the number of residues, incongruous mod. ¢,_,(«), is precisely N.
It is, however, proper to observe, that a complete demonstration of this important
theorem has already been given by Professor SYLVESTER (see a paper signed ¢ Lanavi-

censis,” in the ‘Quarterly Journal of Pure and Applied Mathematics,” vol. iv. p. 94
and.124).



